
A Heuristic Algorithm for Multi-Agent Vehicle Routing with
Automated Negotiation

Dave de Jonge
IIIA-CSIC

Bellaterra, Catalonia, Spain
davedejonge@iiia.csic.es

Filippo Bistaffa
IIIA-CSIC

Bellaterra, Catalonia, Spain
filippo.bistaffa@iiia.csic.es

Jordi Levy
IIIA-CSIC

Bellaterra, Catalonia, Spain
levy@iiia.csic.es

ABSTRACT
We investigate a problem that lies at the intersection of three re-
search areas, namely Automated Negotiation, Vehicle Routing, and
Multi-Objective Optimization. Specifically, we investigate the sce-
nario that multiple competing logistics companies aim to cooperate
by delivering truck loads for one another, in order to improve effi-
ciency and reduce the distance they drive. In order to do so, these
companies need to find ways to exchange their truck loads such
that each of them individually benefits. We present a new heuristic
algorithm that, given one set of orders to deliver for each company,
tries to find the set of all order-exchanges that are Pareto-optimal
and individually rational. Furthermore, we present experiments
based on real-world test data from two major logistics companies,
which show that our algorithm is able to find hundreds of solutions
in a matter of minutes.

KEYWORDS
Vehicle Routing Problem; Automated Negotiation; Multi-objective
Optimization
ACM Reference Format:
Dave de Jonge, Filippo Bistaffa, and Jordi Levy. 2021. A Heuristic Algorithm
for Multi-Agent Vehicle Routing with Automated Negotiation. In Proc. of the
20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Logistics companies have very small profit margins and are there-
fore always looking for ways to improve their efficiency. It is not
uncommon for such companies to have their trucks only half full
when they are on their way to make their deliveries. Moreover, after
completing those deliveries they often head back home completely
empty. This is a clear waste of resources, not only economically, but
also environmentally, as it causes unnecessary emissions of CO2.
For this reason, logistics providers are looking for collaborative
solutions that allow them to share trucks with other logistics com-
panies. This type of cooperation, in which multiple companies load
their deliveries onto a shared truck, is known as co-loading. Find-
ing the optimal co-loading opportunities that minimize the costs
of the companies is a difficult problem, because there are many
possible solutions, and for each of these solutions, calculating its
cost savings amounts to solving a Vehicle Routing Problem (VRP).

This collaborative variant of the VRP has been studied before,
but mainly as a single-objective optimization problem. That is, one

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

tries to find the solution that minimizes the total cost of all compa-
nies involved, and then assumes the benefits will be fairly divided
among them according to some pre-defined scheme. In this paper,
on the other hand, we are looking at it from the point of view of
Automated Negotiations. That is, we are assuming our algorithm
only represents one of the companies, and only knows the exact
cost function of that company, while it has to make estimations of
the other companies’ costs, because they are kept secret. The goal is
to find the set of Pareto-optimal and individually rational solutions,
which can then be proposed to the other companies according to
some negotiation protocol and some negotiation strategy that aims
to maximize the company’s own profit.

Of course, even if the opponents’ cost functions are only approx-
imately known, one could still consider a single-objective approach,
using a standard VRP-solver to find the solution that minimizes
the total (estimated) costs of all companies. The problem with this
approach is that it only yields one solution, and this solution may
not be acceptable to the other companies, either because the estima-
tions were not accurate enough, or because the returned solution is
not individually rational. In contrast, our approach has the advan-
tage that it can find a large set of potential proposals, which allows
us to propose many alternatives in a negotiation process.

Carrying out this research we had the cooperation of two major
logistics providers in the UK, namely Nestlé and Pladis. Although
both these companies’ primary activity is the production of fast-
moving consumer goods (i.e. food, beverages and toiletries), they
each have a large logistics department with large truck fleets that
deliver several hundreds of loads throughout the UK every day.
Their main operations consist in carrying products from their fac-
tories to their Distributions Centers (DC), and from their DCs to
their customers, typically large supermarket chains.

The Vehicle Routing Problem [6] is a generalization of the well-
known Traveling Salesman Problem, in which the goal is to find
optimal routes for multiple vehicles visiting a set of locations. Many
different versions and extensions of this problem have been defined
in the literature, such as the capacitated VRP in which the vehicles
are constrained by volume and/or maximum load weight, the VRP
with pickups and deliveries, in which the loads have a specific pickup
and delivery location, so if a vehicle passes a certain location to pick
up a load it should also pass the delivery location of that load, and
the VRP with time windows, in which the vehicles have to arrive at
each location within a given time window. In this paper, we take all
these constraints into account, so we are dealing with a capacitated
pickup and delivery problem with time windows (CPDPTW). Our
aim is to to create a system that can actually be used in real life by
our industrial partners.



We should remark that co-loading is only possible if the logistics
companies are willing to disclose the locations of their customers
to each other. Fortunately, our partners have indicated that this is
not a problem for them (their customers are mainly supermarkets,
so their locations are not really secret anyway).

2 RELATEDWORK
2.1 Vehicle Routing Problems
The VRP was introduced by Dantzig and Ramser in 1959 [6], and
is one of the most extensively studied combinatorial optimization
problems. In 1964, Clarke and Wright proposed an effective greedy
heuristic that improved on the Dantzig–Ramser approach [4]. Fol-
lowing these two seminal papers, hundreds of models and algo-
rithms were proposed for the optimal and approximate solution
of the different versions of the VRP. A classification scheme was
given in [8]. The VRP has been covered extensively in the books by
Toth & Vigo [33] and Golden et al. [14]. Laporte and Nobert [23]
presented an extensive survey entirely devoted to exact methods
for the VRP, and gave a complete and detailed analysis of the state
of the art up to the late 1980s. Even the more specific topic of VRPs
with pickups and deliveries and time windows has been studied
extensively and comprehensive surveys on this topic have been
published [9, 31].

2.2 Collaborative VRP
The collaborative VRP is a variant that involves multiple logistics
operators. A recent survey of this topic was presented in [13]. This
survey distinguishes between three methodologies: centralized col-
laborative planning, auction-based decentralized planning, and de-
centralized planning without auctions. We are interested in the last
one. They identify 14 papers of this type, but only four of them deal
with VRPs that include Time Windows, and Pickup-and-Delivery
[5, 35–37]. Although these approaches are labeled as ‘decentralized’,
this really only means ‘not fully centralized’ because, although the
final decisions are made by the individual logistics companies, there
is still a central system that does the search for potential solutions,
based on the companies’ cost models. Therefore, the collaborative
VRP is still mostly a classical single-objective optimization problem.
In [35], [36], and [37] the goal is to find a globally optimal solu-
tion that maximizes the total profit, while in [5] the central system
calculates a price that fairly divides the benefits of collaboration
among the two collaborating companies.

None of these solutions are feasible in our context, because
our industrial partners have indicated that any form of sharing
of information about their respective cost models is out of the
question, even if it is only shared with a trusted central system.

2.3 Multi-Objective VRP
A large survey of VRPs with multiple objective functions has been
conducted in [22]. However, as far aswe can see, all papers discussed
in this survey assume just a single logistics company with multiple
objective functions. For example, a company may wish to strike a
balance between minimizing the distance traveled and minimizing
the probability of arriving too late, so they try to find all Pareto-
optimal solutions w.r.t. to those two objectives. None of the papers
in this survey cover the case that there are multiple companies.

2.4 VRP with Negotiations
As explained, many papers have been written that either involve
multiple companies with one single shared objective function (the
collaborative VRP) or a single company with multiple objective
functions (the multi-objective VRP), but much less has been pub-
lished about VRPs with multiple companies where each company
has its own individual objective function. We are aware of only a
few papers that do treat somewhat similar problems.

In [34] a case study is presented that explores one-to-many nego-
tiations between one 4PL provider and several 3PL providers. A 3PL
provider is a logistics company with its own truck fleet while a 4PL
provider does not have a fleet, but receives large transport orders
from shippers and then redistributes them among 3PL providers. A
very similar scenario is treated in [29] and [30], except that they use
auction mechanisms instead of negotiations. Two other papers that
are closely related to our work, are [17] and [18] which describe
an algorithm based on Branch & Bound for negotiations among
competing package delivery companies about the exchange of pack-
ages. They, however, do not take into account time windows, or
volume- and weight- constraints, and they are not using real-world
data, but only artificial test cases. Somewhat less relevant to our
work, but still related, is [3] which describes a system that carries
out negotiation between a port terminal and logistics companies to
negotiate time slots for arriving at the terminal.

3 AUTOMATED NEGOTIATION
The research field of Automated Negotiations deals with multi-
agent systems in which each agent is purely self-interested, but
in which the agents need to cooperate in order to find mutually
beneficial solutions. The agents propose potential solutions to each
other, which may then be either accepted or rejected. If a proposal
is accepted by all agents involved, then each of them obtains the
respective utility value it associates with that solution.

Although each agent is purely self-interested, the proposals it
makes must also benefit the other agents, because otherwise they
would never accept it. Therefore, each agent must strike a balance
between maximizing its own utility, and providing enough utility
to its opponents to make them accept the proposal. To do this, an
agent typically starts by making very selfish proposals, but, as time
passes, slowly concedes by making proposals that are less and less
selfish. Such a strategy requires the agent to have a large set of
potential proposals available, with varying degree of selfishness.

The aim of our work is to develop a negotiating agent that can
be applied by a logistics company to negotiate co-loading opportu-
nities with other logistics companies. However, in this paper we
only focus on one component of such an agent, namely the search
algorithm to find a set of potential proposals. This set of potential
proposals can then be fed as the input to some negotiation strategy.
The question how to implement such a negotiation strategy is be-
yond the scope of our work because many such algorithms have
already been proposed and implemented [1, 11, 12, 38].

Search algorithms for automated negotiations have been stud-
ied, for example using simulated annealing [15, 25, 26], or genetic
algorithms [19, 27]. However, these papers only looked at problems
in which the utility of a single deal could be computed quickly.
They did not involve the complexity of the VRP. Also, as mentioned



before, [18] and [17] applied a Branch & Bound approach, but to a
simpler and purely artificial scenario.

One important thingwe should point out, is that we are assuming
the companies only negotiate about which company will deliver
which orders, and not about any form of financial compensation for
the delivery of another company’s orders. There are several reasons
for this. Scientifically, price negotiations would make our scenario
less interesting because the problemwould just be a single-objective
optimization problem again, with the goal of minimizing the sum of
the costs of the companies. The companies would then only need to
negotiate how to divide the joint financial gains. Such 1-dimensional
negotiations are not very interesting compared to the state-of-the-
art. A more practical reason, is that our partners have indicated that
automated price negotiations are not acceptable in a true working
system. They require prices to be fixed over a longer term, such
as a whole year. Automated day-to-day price negotiations would
yield an opaque pricing mechanismwith possibly highly fluctuating
prices, and this would be a serious problem for their bookkeeping.

So, any form of financial compensation should be fixed in ad-
vance, and cannot not be subject to automated negotiation. In this
paper we will simply assume the financial compensation is zero,
meaning that any company would only accept to make a delivery
for another company if that other company returns the favor by
making a delivery for the first one.1

Our negotiation domain is different from the more commonly
studied domains in the automated negotiations literature, in the
following two aspects:

(1) Although agents do not have exact knowledge about their
opponents’ utility functions, they can make reasonable esti-
mations.

(2) Utility functions are expressed as a computationally complex
problem (a VRP), so even with perfect knowledge an agent
would still not be able to calculate utility values exactly.
Instead, it has to resort to heuristic estimations.

Regarding the first point, most studies in automated negotiations
assume the agents have absolutely no knowledge at all about their
opponents’ utility functions [1, 2]. Alternatively, in some work it
is assumed that agents have perfect knowledge about each others’
utility [21]. In our domain, however, the truth lies somewhere in the
middle. The agents do not know each others’ exact utility functions,
but they can make reasonable estimations. After all, we do know
that each company aims to minimize distance and time, and the
distances between the locations are known. Furthermore, although
each company may pay a somewhat different price for its fuel, the
write-off of its vehicles, or the salaries of its drivers, those prices
cannot be radically different among the companies.

One main example of a negotiation domain that has been studied
extensively and that does also involve these two aspects, is the game
of Diplomacy [10, 16, 20, 32]. However, this is a purely artificial
game, while in this paper we are studying a real-world scenario.

4 DEFINITIONS
Formally, the problem we tackle in this paper is the following (the
precise definitions of the concepts mentioned here are given in
1More complex deals are also possible, as long as each company involved in the deal
benefits.

the rest of this section). Let 𝐶1, . . .𝐶𝑚 denote a number of logistics
companies. Then, given a location graph (𝐿, 𝑅, 𝑑), a distance cost
𝑑𝑐 ∈ R a time cost 𝑡𝑐 ∈ R, and, for each company𝐶𝑖 a set of orders𝑂𝑖 ,
a vehicle fleet 𝑉𝑖 and an initial fleet schedule fs𝑖 , find the set of order
assignments that are both individually rational and Pareto-optimal
with respect to the cost model (𝑑𝑐, 𝑡𝑐).

Here, N denotes the set of natural numbers, R the set of real
numbers, and T denotes some set of possible time stamps (e.g. Unix
time stamps).

Definition 4.1. The location graph (𝐿, 𝑅, 𝑑) is a weighted graph
with vertices 𝐿, which we refer to as locations, edges 𝑅, which we
refer to as roads, and a weight function 𝑑 : 𝑅 → R.

This graph represents a set of possible locations where a logis-
tics provider could pick up or drop off loads (i.e. the factories and
distribution centers of the logistics companies, as well as the loca-
tions of their customers), and the roads between those locations.
The number 𝑑 (𝑟 ) represents the distance between two locations, in
kilometers. We assume, without loss of generality, that the graph is
complete and symmetric and that 𝑑 satisfies the triangle inequality.

Customers place orders with the logistics companies. An order
represents a certain number of pallets to be picked up and delivered
within specified time windows and at specified locations.

Definition 4.2. An order is a tuple (𝑣𝑜𝑙,𝑤, 𝑙𝑝𝑢 , [𝑡1, 𝑡2], 𝑙𝑑𝑜 , [𝑡3, 𝑡4]),
where: 𝑣𝑜𝑙 ∈ N is the volume of the load, measured as a number
of pallets.𝑤 ∈ R is the weight of the load, measured in kilograms.
𝑙𝑝𝑢 ∈ 𝐿 is the pick-up location. 𝑡1 ∈ T and 𝑡2 ∈ T represent
the earliest and latest time the load can be picked up, respectively.
𝑙𝑑𝑜 ∈ 𝐿 is the drop-off location. 𝑡3 ∈ T and 𝑡4 ∈ T represent the
earliest and latest time the load can be dropped off, respectively.

Definition 4.3. A vehicle is a tuple (𝑣𝑜𝑙𝑚𝑎𝑥 ,𝑤𝑚𝑎𝑥 , 𝑠), where:
𝑣𝑜𝑙𝑚𝑎𝑥 ∈ N is the volume of the vehicle, i.e. the maximum number
of pallets it can carry. 𝑤𝑚𝑎𝑥 ∈ R is maximum load weight of
the vehicle, measured in kilograms. 𝑠 is the average speed we can
realistically assume the vehicle to drive.

4.1 Schedules
We define the solutions of a VRP in terms of what we call jobs. A
job represents a number of orders scheduled to be picked up and/or
a number of orders scheduled to be delivered, by a single vehicle,
at a single location, within a specific time window.

Definition 4.4. A job 𝐽 is a tuple: (𝑙,𝑂𝑝𝑢 ,𝑂𝑑𝑜 , 𝑡𝑒𝑑 , 𝑡𝑙𝑎) with: 𝑙 ∈ 𝐿

some location. 𝑂𝑝𝑢 a (possibly empty) set of orders to be picked
up at 𝑙 , 𝑂𝑑𝑜 a (possibly empty) set of orders to be dropped off
at 𝑙 , 𝑡𝑒𝑑 ∈ T the earliest possible departure time, and 𝑡𝑙𝑎 ∈ T the
latest possible arrival time, satisfying the following constraints:

• for each 𝑜 ∈ 𝑂𝑝𝑢 the pick-up location of 𝑜 must be the
location 𝑙 of this job, and 𝑡𝑒𝑑 and 𝑡𝑙𝑎 must be consistent with
the pick-up time window of 𝑜 , i.e 𝑡1 ≤ 𝑡𝑒𝑑 and 𝑡𝑙𝑎 ≤ 𝑡2.

• for each 𝑜 ∈ 𝑂𝑑𝑜 the drop-off location of 𝑜 must be the
location 𝑙 of this job, and 𝑡𝑒𝑑 and 𝑡𝑙𝑎 must be consistent with
the drop-off time window of 𝑜 , i.e 𝑡3 ≤ 𝑡𝑒𝑑 and 𝑡𝑙𝑎 ≤ 𝑡4.

A vehicle-schedule represents the itinerary of a single vehicle.
Definition 4.5. A vehicle schedule is an ordered list:

(𝐽0, 𝐽1, 𝐽2, . . . , 𝐽𝑛) where each 𝐽𝑖 is a job, and 𝑛 ∈ N can be any



natural number. Any vehicle schedule must satisfy the following
constraints (in the following, the sets of pick-up and drop-off orders
of job 𝐽𝑖 are denoted as 𝑂𝑝𝑢,𝑖 and 𝑂𝑑𝑜,𝑖 respectively).

• The jobs are listed in chronological order:
if 𝑖 < 𝑗 then 𝑡𝑒𝑑,𝑖 < 𝑡𝑒𝑑,𝑗 and 𝑡𝑙𝑎,𝑖 < 𝑡𝑙𝑎,𝑗 .

• Each order appearing in any of the jobs of the vehicle sched-
ule has to be picked up and dropped off exactly once.

• Each order must be picked up before it can be dropped off:
if 𝑜 ∈ 𝑂𝑝𝑢,𝑖 and 𝑜 ∈ 𝑂𝑑𝑜,𝑗 then 𝑖 < 𝑗 .

• The location of 𝐽0 is equal to the location of 𝐽𝑛 , and is known
as a depot (each company has one or more depots).

If 𝑜 is an order, and vs is a vehicle schedule, we may write 𝑜 ∈ vs
when we mean that 𝑜 is picked-up and dropped off by vs. The set
of all possible vehicle schedules is denoted VS.

Definition 4.6. A fleet schedule fs for a set of vehicles𝑉 and
a set of orders 𝑂 is a map that assigns every vehicle in 𝑉 to some
vehicle schedule vs such that every order 𝑜 ∈ 𝑂 appears in exactly
one of these vehicle schedules.

fs : 𝑉 → VS such that ∀𝑜 ∈ 𝑂 ∃!𝑣 ∈ 𝑉 : 𝑜 ∈ fs(𝑣)
Furthermore, for each vehicle 𝑣 the corresponding vehicle schedule
vs = fs(𝑣) must satisfy:

• After each job of vs, the volume and weight of the orders
loaded onto the vehicle must be below 𝑣𝑜𝑙𝑚𝑎𝑥 and𝑤𝑚𝑎𝑥 .

• The difference between the earliest departure times 𝑡𝑒𝑑,𝑖 and
𝑡𝑒𝑑,𝑖+1 of two consecutive jobs of vs must be consistent with
the distance between the two locations and the speed 𝑠 of the
vehicle (and the same for the latest possible arrival times).

4.2 Cost Functions
For any vehicle schedule vs we calculate its cost 𝑐 (vs) ∈ R as
follows:

𝑐 (𝑣𝑠) := 𝑑𝑐 ·
𝑛∑
𝑖=1

𝑑 (𝑟𝑖 ) + 𝑡𝑐 · (𝑡𝑙𝑎,𝑛 − 𝑡𝑙𝑎,0) (1)

where 𝑑𝑐 ∈ R is the distance cost2 (in euros per kilometer), 𝑟𝑖 the
road between the locations of 𝐽𝑖−1 and 𝐽𝑖 of vs, 𝑡𝑐 ∈ R is the time
cost (in euros per hour), 𝑡𝑙𝑎,𝑛 ∈ T is the latest possible arrival time
of the last job 𝐽𝑛 , and 𝑡𝑙𝑎,0 ∈ T is the latest possible arrival time of
the first job 𝐽0 (which in this case should actually be interpreted as
the latest possible departure time3).

The distance- and time costs 𝑑𝑐 and 𝑡𝑐 are together referred to
as the cost model. In reality, each company would use a different
cost model to calculate its own costs. However, since our algorithm
represents only one company, and the cost models of the other
companies are unknown, it always calculates the costs of any com-
pany using the same cost model (of the company it represents).
Therefore, the calculated costs are just estimations of the true costs.
2Perhaps surprisingly, the distance cost does not depend on howmuch weight is loaded
onto the vehicle. This may seem unrealistic, but this is how many real-world logistics
companies do calculate their costs. Furthermore, to keep the discussion simple we
here assume that 𝑑𝑐 does not depend on the vehicle. Our implementation, however,
does allow 𝑑𝑐 to be different for each vehicle.
3Our current implementation does not yet take into account the time it takes to load
or unload. Therefore, there is no real distinction between arrival- or departure- times.
A vehicle departs immediately upon arrival. We will include service times later, but
we do not expect this to have a significant impact on the details of our algorithm.

If fs is a fleet schedule for some set of vehicles 𝑉 , then its cost
𝑐 (fs) ∈ R is defined as the sum of the costs of all its vehicle sched-
ules:

𝑐 (fs) :=
∑
𝑣∈𝑉

𝑐 (fs(𝑣)) (2)

4.3 Assignments
Suppose there are 𝑚 logistics companies 𝐶1,𝐶2, . . .𝐶𝑚 . Each of
these companies has a fleet of vehicles 𝑉𝑖 and a set of orders 𝑂𝑖 to
fulfill. We say an order is owned by𝐶𝑖 if 𝑜 ∈ 𝑂𝑖 . However, any two
companies 𝐶𝑖 and 𝐶 𝑗 may agree with each other that some order
𝑜 owned by 𝐶𝑖 will be picked up and delivered by a vehicle of the
other company 𝐶 𝑗 . In that case we say that an order is assigned
to 𝐶 𝑗 .

Definition 4.7. An order assignment (or simply assignment)
𝛼 for a set of orders𝑂 is a map that assigns each order in𝑂 to some
company 𝐶𝑖 : 𝛼 : 𝑂 → {𝐶1,𝐶2, . . .𝐶𝑚}. We let 𝑂𝛼,𝑖 denote the
set of orders assigned to 𝐶𝑖 by 𝛼 .

𝑂𝛼,𝑖 := {𝑜 ∈ 𝑂 | 𝛼 (𝑜) = 𝐶𝑖 }

So, if𝑂 consists of all the orders owned by any of the companies and
𝛼 is an assignment for𝑂 then we have𝑂 =

⋃𝑚
𝑖=1𝑂𝑖 =

⋃𝑚
𝑖=1𝑂𝛼,𝑖 .

The initial assignment 𝛼 is the assignment that simply assigns
each order to the company that owns it, i.e. 𝛼 (𝑜) = 𝐶𝑖 iff 𝑜 ∈ 𝑂𝑖 .
Therefore, we have 𝑂𝛼,𝑖 = 𝑂𝑖 .

If 𝑉𝑖 is the fleet of some company 𝐶𝑖 and 𝛼 some assignment,
then 𝐹𝑆𝛼,𝑖 denotes the set of all possible fleet schedules for fleet 𝑉𝑖
and orders 𝑂𝛼,𝑖 . Furthermore, we use fs∗𝛼,𝑖 to denote the optimal
fleet schedule for company 𝐶𝑖 under assignment 𝛼 . That is:

fs∗𝛼,𝑖 := argmin{𝑐 (fs) | fs ∈ 𝐹𝑆𝛼,𝑖 } (3)

and we use 𝑐𝑖 (𝛼) to denote the cost of that fleet schedule

𝑐𝑖 (𝛼) := 𝑐 (fs∗𝛼,𝑖 ) (4)

We say an assignment 𝛼 dominates another assignment 𝛼 ′

iff for all 𝑖 ∈ {1, . . .𝑚} 𝑐𝑖 (𝛼) ≤ 𝑐𝑖 (𝛼 ′), and for at least one of
these companies the inequality is strict. We say an assignment 𝛼
is Pareto-optimal iff there is no 𝛼 ′ that dominates 𝛼 , and we say
that 𝛼 is individually rational iff it dominates 𝛼 .

We should remark here that whenever we use terms like (Pareto-)
optimal or ‘individually rational’, we actuallymean (Pareto-)optimal
or individually rational with respect to the cost model (𝑑𝑐, 𝑡𝑐). After
all, our algorithm calculates all costs for all companies using that
cost model, even though in reality each company would calculate
its own costs using a different cost model.

In the language of the automated negotiation literature, our prob-
lem is a negotiation domain, where the agreement space consists
of all possible assignments 𝛼 for the orders of all companies. The
utility functions are the (negation of) the cost functions 𝑐𝑖 (𝛼) de-
fined by Eq. (4), the conflict outcome, representing the case that no
agreement is made, is the initial assignment 𝛼 , and the reservation
values are given by 𝑐𝑖 (𝛼).

Note that to calculate 𝑐𝑖 (𝛼) we need to find the optimal fleet
schedule fs∗𝛼,𝑖 which amounts to solving a Vehicle Routing Problem.



5 ORDER PACKAGE HEURISTICS
In order to know which deals to propose, the negotiating agents
have to evaluate the possible ways to exchange orders between
companies, and find the best ones. If there are𝑚 companies and
each company has 𝑋 orders, then there are𝑚𝑚𝑋 possible order as-
signments. For realistic cases this number is astronomical, because
our industrial partners each typically have more than a hundred
orders to deliver, every day. This means that our problem has two
layers of complexity:

(1) There are many possible assignments:𝑚𝑚𝑋 .
(2) Given a single assignment 𝛼 , it is complex to calculate its

cost 𝑐𝑖 (𝛼), because it involves solving a VRP (by Eq. (3)).
Typical (meta-)heuristic search algorithms like genetic algorithms
and simulated annealing can solve the problem of the first layer
of complexity, because they are able to find good solutions while
only evaluating a small fraction of the entire search space. However,
such algorithms typically may still require thousands of evalua-
tions, so if each of these evaluations requires solving a VRP the
overall algorithm will still be prohibitively slow. For this reason we
needed to invent a new heuristic algorithm that can deal with the
complexity at both levels. We call it the Order Package Heuristics.

The idea is that we first only look at what we call one-to-one ex-
changes, which are exchanges of orders in which one company gives
a number of orders that were originally scheduled to be delivered
by the same vehicle to another company, and that other company
incorporates those orders into the schedule of one of its vehicles. So
‘one-to-one’ refers to the fact that the orders are moved from one
vehicle schedule to one other vehicle schedule. After determining
and evaluating the one-to-one exchanges we can then combine
them into more general solutions. Furthermore, when we construct
one-to-one exchanges we restrict ourselves to the exchange of sets
of orders that correspond to a sequence of consecutive locations to
be visited. We call such sets of orders order packages.

Our algorithm represents company 𝐶1 and receives as input:
• A location graph (𝐿, 𝑅, 𝑑).
• A set of orders 𝑂𝑖 for each company 𝐶𝑖 .
• A set of vehicles 𝑉𝑖 for each company 𝐶𝑖 .
• The cost model (𝑑𝑐, 𝑡𝑐) of company 𝐶1.
• For each company, an initial fleet schedule fs𝑖 ∈ 𝐹𝑆𝛼,𝑖 .

The output of the algorithm is:
• A set of assignments {𝛼1, 𝛼2, . . . }, which, in the ideal case,
would be exactly the set of all Pareto-optimal assignments.

The initial fleet schedules fs𝑖 should approximate the optimal initial
schedules fs∗

𝛼,𝑖
of each company (i.e. the optimal solution for each

company if there was no collaboration at all). These can either be
given to us by the other companies, or our agent can determine
them by itself using a VRP-solving algorithm (although in that case
they may not be the same as the ones actually used by the other
companies).

In the rest of this section we give a detailed, step-by-step descrip-
tion of this heuristic.

5.1 Step 1: Find Compatible Order-Vehicle Pairs
Given the orders 𝑂𝑖 and the the initial fleet schedule fs𝑖 of each
company, we start by determining for each order which vehicles

of other companies could adjust their schedules to also pick up
and drop off that order. If indeed it is possible for a vehicle 𝑣 with
schedule vs to make two detours to pick up and drop off 𝑜 then we
say that 𝑜 and vs are compatible, or that 𝑜 and 𝑣 are compatible.

Definition 5.1. Let 𝑜 be an order of one company 𝐶𝑖 , let vs =

(𝐽0, 𝐽1, . . . 𝐽𝑛) be a vehicle schedule of another company 𝐶 𝑗 , and
let 𝑣 be the vehicle scheduled to execute vs (i.e. vs = fs 𝑗 (𝑣)). We
say that 𝑜 and vs are compatible if it is possible to insert two jobs
𝐽𝑝𝑢 , 𝐽𝑑𝑜 anywhere into vs to obtain a new vehicle schedule

vs′ = (𝐽0, . . . 𝐽 ′𝑘 , 𝐽𝑝𝑢 , , 𝐽
′
𝑘+1, . . . 𝐽

′
𝑚, 𝐽𝑑𝑜 , 𝐽

′
𝑚+1, . . . 𝐽𝑛)

that satisfies all relevant time- and capacity-constraints, where
job 𝐽𝑝𝑢 is the pickup of order 𝑜 , job 𝐽𝑑𝑜 is the drop-off of order 𝑜 ,
and where all other jobs of vs′ are exactly the same as those in vs,
except that for 𝐽𝑘 , 𝐽𝑘+1, 𝐽𝑚 , and 𝐽𝑚+1 the latest arrival- and earliest
departure times may be adjusted. We then also say that 𝑜 and 𝑣

form a compatible order-vehicle pair.

The operation of converting vs into vs′ is essentially the same
as what Li and Lim call the PD-shift operator [24].

Knowing all compatible order-vehicle pairs will allow us to prune
a large part of the search space in Step 3, because we can discard
all solutions involving orders and vehicles that are incompatible.

Time Complexity. If there are𝑚 companies and each company has
𝑋 orders and for each company their initial fleet schedule involves
𝑌 vehicle schedules, then there are𝑚𝑋 · (𝑚 − 1)𝑌 possible order-
vehicle pairs. For each of these order-vehicle pairs we need to
check whether the order and the vehicle schedule are compatible
or not. This means we need to check whether the pickup and the
drop off of the order can be inserted into the vehicle schedule. If
the vehicle schedule has 𝑛 + 1 different jobs then the pickup and
the drop-off can both potentially be inserted in 𝑛 different places,
but since the drop off always needs to take place after the pickup,
there are 1

2𝑛 · (𝑛 − 1) options to check. Furthermore, the value 𝑛
can be estimated as 𝑛 ≈ 2𝑋/𝑌 (if a company has 𝑋 orders and
𝑌 vehicle schedules, then each vehicle schedule has on average
𝑋/𝑌 orders to pick up and drop off, so it may need to visit 2𝑋/𝑌
locations). So, for each of the𝑚𝑋 · (𝑚 − 1)𝑌 possible order-vehicle
pairs we need to check whether it is compatible or not, which
takes 1

2 · 2𝑋/𝑌 · ((2𝑋/𝑌 ) − 1) checks, which yields an overall time
complexity of (𝑚𝑋 · (𝑚−1)𝑌 ) · 12 ·2𝑋/𝑌 · ((2𝑋/𝑌 )−1) = 𝑂 (𝑚2𝑋 3/𝑌 ).

Finally, it is fair to say that the number of vehicle schedules of
a company should grow linearly with the number of orders, since
each vehicle has a limited capacity. Therefore, within the big-O
notation we can set 𝑋 equal to 𝑌 , which means that Step 1 has a
time complexity of 𝑂 (𝑚2𝑋 2)

5.2 Step 2: Determine All Order Packages
In the previous step we checked for each individual order whether
it is possible to be delivered by some given other vehicle, but in
general we want to know whether a set of orders can be exchanged
from one vehicle (of one company) to another vehicle (of another
company). However, since the number of such sets is exponential
we only look at a particular type of order set, which we call an order
package. An order package is a set of orders, originally scheduled



in one vehicle schedule, such that if we remove them from the
schedule the vehicle can skip a set of consecutive locations.

The idea behind this, is that if a few of the locations to be visited
by a vehicle are close to each other, then we are most likely to
achieve a significant distance reduction if all of those locations are
skipped, and such closely clustered locations are likely to be visited
consecutively in the original schedule.

If J is a set of jobs, then let𝑂𝑟𝑑 (J) denote the set of all orders
that are either picked up or dropped off in any of the jobs in J .

Definition 5.2. Let vs𝑑 = (𝐽0, 𝐽1, . . . 𝐽𝑛) be a vehicle schedule. An
order package 𝑜𝑝 from vs𝑑 is a set of orders such that there exist
two integers 𝑘, 𝑙 with 0 < 𝑘 < 𝑙 < 𝑛 for which

𝑜𝑝 = 𝑂𝑟𝑑 ({𝐽𝑘 , 𝐽𝑘+1, . . . 𝐽𝑙 })
The vehicle schedule vs𝑑 is called the donating vehicle schedule
of 𝑜𝑝 . The vehicle 𝑣𝑑 that was scheduled to execute vs𝑑 (i.e. vs𝑑 =

fs𝑖 (𝑣𝑑 )) is called the donating vehicle, and the company 𝐶𝑖 that
owns 𝑣𝑑 and the orders of 𝑜𝑝 is the donating company.

Step 2 consists in extracting all order packages from the vehicle
schedules of the initial fleet schedules fs𝑖 . For each of these order
packages we then calculate the cost savings 𝑠𝑎𝑣 (𝑜𝑝) associated
with it. That is, the difference between the cost 𝑐 (vs𝑑 ) of the origi-
nal vehicle schedule vs𝑑 minus the cost 𝑐 (vs′

𝑑
) of the new vehicle

schedule vs′
𝑑
obtained by removing all pick-ups and drop-offs of

the orders in 𝑜𝑝 from vs𝑑 .
𝑠𝑎𝑣 (𝑜𝑝) := 𝑐 (vs𝑑 ) − 𝑐 (vs′

𝑑
) (5)

In order to calculate 𝑐 (vs′
𝑑
) we do not actually need to determine vs′

𝑑
itself. Instead, we only need to know its total time and distance (see
Eq. (1)). To calculate the distance we simply take 𝑣𝑠𝑑 and remove
the locations that are skipped. Calculating the new time cost is
more difficult, so we simplify it by simply assuming the departure
time 𝑡𝑙𝑎,0 and arrival time 𝑡𝑙𝑎,𝑛 at the depot stay the same. In reality,
of course, this may be overly pessimistic, so in general the true cost
savings will be even better than the calculated ones.

Time Complexity. Given a vehicle schedule vs𝑑 , each order package
from vs𝑑 is uniquely defined by the integers 𝑘 and 𝑙 , which can
be any number between 1 and 𝑛 − 1. Therefore, for each vehicle
schedule there are (𝑛−1) ·(𝑛−2)

2 = 𝑂 (𝑛2) different order packages. As
explained above,𝑛 can be estimated as 2𝑋/𝑌 , so the number of order
packages obtained from vs𝑑 is𝑂 (𝑋 2/𝑌 2). Since we obtain the order
packages from each vehicle schedule of each company we have to
repeat this 𝑚𝑌 times, so there are 𝑂 (𝑋 2/𝑌 2 ·𝑚𝑌 ) = 𝑂 (𝑚𝑋 2/𝑌 )
order packages in total. Furthermore, calculating the cost savings
means summing the distances of all 𝑛 roads between the visited
locations, and again using 𝑛 ≈ 2𝑋/𝑌 the total time complexity of
Step 2 is 𝑂 (𝑚𝑋 2/𝑌 · 2𝑋/𝑌 ) = 𝑂 (𝑚𝑋 3/𝑌 2). Arguing again that 𝑋
can be set equal to 𝑌 , we can simplify this to 𝑂 (𝑚𝑋 ).

5.3 Step 3: Generate One-to-One Exchanges
In Step 3 we take all order packages from Step 2, and all vehicle
schedules from the initial fleet schedules fs𝑖 and combine them into
one-to-one order exchanges.

Definition 5.3. A one-to-one order exchange or simply one-
to-one exchange is a pair (𝑜𝑝, vs𝑟 ) where op is an order package

of one company, and vs𝑟 is a vehicle schedule of another company.
A one-to-one exchange is feasible if it is possible to find a single
vehicle schedule vs′𝑟 that delivers all orders of op as well as all orders
of vs𝑟 while satisfying all relevant time- and capacity constraints.
The schedule vs𝑟 is called the receiving vehicle schedule, while
the vehicle 𝑣𝑟 that was scheduled to execute vs𝑟 (i.e. fs𝑖 (𝑣𝑟 ) = vs𝑟 )
is called the receiving vehicle, and the company 𝐶𝑖 that owns 𝑣𝑟
is the receiving company.

Determining whether a one-to-one exchange (𝑜𝑝, vs𝑟 ) is feasible
or not amounts to solving a VRP. For this, we use an existing VRP-
solver from the OR-Tools library by Google [28]. Specifically, we
take the set consisting of all orders from 𝑜𝑝 and all orders from vs𝑟
and then ask the VRP-solver to find a schedule for a single vehicle
that delivers all those orders. If this is indeed possible, the solver
will output a new vehicle schedule vs′𝑟 . We then calculate the loss
𝑙𝑜𝑠𝑠 (𝑜𝑝, vs𝑟 ) for the receiving company, which is the difference
between the cost 𝑐 (vs′𝑟 ) of this new schedule and the cost 𝑐 (vs𝑟 ) of
the original schedule (both calculated with Eq. (1)).

𝑙𝑜𝑠𝑠 (𝑜𝑝, vs𝑟 ) = 𝑐 (vs′𝑟 ) − 𝑐 (vs𝑟 ) (6)
However, calling the VRP-solver is computationally expensive, so
before doing this we use the results from Step 1 to directly discard
many one-to-one exchanges without calling the solver. Specifically,
a pair (𝑜𝑝, vs𝑟 ) is only considered if every order𝑜 ∈ 𝑜𝑝 is compatible
(Def. 5.1) with vs𝑟 . All other pairs (𝑜𝑝, vs𝑟 ) are discarded.

We should note, however, that this procedure may discard many
one-to-one exchanges that are actually feasible, because even if
some orders of 𝑜𝑝 are not compatible with vs𝑟 it may still be possible
to find some vehicle schedule that does deliver all orders. This is
because ‘compatible’ only means that the order can be incorporated
in the vehicle schedule with a few minor adjustments. It does not
take into account that an entirely re-arranged vehicle schedule
could still be found that does succeed in delivering all orders.

After we have obtained the set of feasible one-to-one exchanges,
we can again discard many of them. Namely, those that do not
yield any overall benefit because the loss for the receiving com-
pany is greater than the savings of the donating company, i.e. if
𝑙𝑜𝑠𝑠 (𝑜𝑝, 𝑣𝑠𝑟 ) > 𝑠𝑎𝑣 (𝑜𝑝).

Time Complexity. The number of one-to-one exchanges equals the
number of order packages times the number of vehicle schedules.
The first has been calculated to be 𝑂 (𝑚𝑋 2/𝑌 ) and the second is
𝑚𝑌 , so the number of one-to-one exchanges is 𝑂 (𝑚2𝑋 2). For each
of these we need to call the VRP-solver. Although calling the VRP-
solver is expensive in practice, the formal computational complexity
of this step is actually𝑂 (1). This is because we are here only using
it to solve problem instances with a single vehicle, and the size of
such instances is bounded by the capacity constraints of the vehicle.
This means that the overall time complexity of Step 3 is 𝑂 (𝑚2𝑋 2)

5.4 Step 4: Combine One-to-One Exchanges
into Full Exchanges

After Step 3 we are left with a set of feasible one-to-one exchanges.
Each of these already represents an assignment, but many more
assignments can be found if we combine them, so that multiple
order packages can be exchanged and loaded onto multiple vehicles.
Furthermore, if we do not assume any form of payment between



the companies then a single one-to-one exchange would never
be an acceptable deal, because the receiving company only loses
money. But, if the overall savings of each one-to-one exchange is
positive (i.e. 𝑠𝑎𝑣 (𝑜𝑝) > 𝑙𝑜𝑠𝑠 (𝑜𝑝, 𝑣𝑠𝑟 )) then we can combine them
into bundles that are individually rational.

However, not every such bundle is feasible, because several one-
to-one exchanges may contradict each other. For example, two
different order packages, 𝑜𝑝1 and 𝑜𝑝2, may contain the same order
𝑜 , and may appear in two different one-to-one exchanges (𝑜𝑝1, vs1)
and (𝑜𝑝2, vs2) with different receiving schedules.

Definition 5.4. A full order exchange 𝑆 is a set of one-to-one
exchanges, i.e. 𝑆 = {(𝑜𝑝1, vs1), (𝑜𝑝2, vs2), . . . (𝑜𝑝𝑘 , vs𝑘 )}, such that
all order packages are mutually disjoint: 𝑜𝑝𝑖 ∩ 𝑜𝑝 𝑗 = ∅ for all
𝑖, 𝑗 ∈ 1 . . . 𝑘 .

Again, determining the exact set of all full order exchanges is
costly, so we simplify this by only looking for those sets 𝑆 for which
each vehicle either:

• only acts as receiving vehicle, in exactly one element of 𝑆 , or
• only acts as donor vehicle, in one or more elements of 𝑆 , or
• is not involved in any element of 𝑆 .

This not only reduces the size of the set of possible solutions, but
also has one other very big advantage: it means that for any com-
pany the total profit it makes from the deal can be calculated simply
as the sum of all its savings minus the sum of all its losses for the
elements of 𝑆 .

The problem of finding the set of full order exchanges that satisfy
these criteria and that are Pareto-optimal can now be modeled as
a multi-objective optimization problem (MOOP), i.e. a constraint
optimization problem with multiple objective functions, with the
following features:

• Variables: The set of variables is the set of all vehicles (of
all companies).

• Values: For each vehicle 𝑣 the set of values that can be
assigned to this variable is the set of one-to-one exchanges
with 𝑣 as the receiving vehicle, plus an extra value denoted
none.

• Hard constraints:A vehicle cannot appear both as a receiv-
ing vehicle and as a donating vehicle in the same solution.
Also, all order packages in 𝑆 must be mutually disjoint.

• Objective functions: There is one objective function for
each company, namely the sum of the company’s savings
over all one-to-one exchanges in the solution, minus the sum
of its losses.

A solution to this MOOP is a variable assignment { 𝑣1 ↦→ (𝑜𝑝1, vs1),
𝑣2 ↦→ (𝑜𝑝2, vs2), . . . 𝑣 𝑗 ↦→ 𝑛𝑜𝑛𝑒, . . . 𝑣𝑘 ↦→ (𝑜𝑝𝑘 , vs𝑘 ) }, in which for
each vs𝑖 its receiving vehicle is 𝑣𝑖 . This can then be converted to the
full order exchange {(𝑜𝑝1, vs1), (𝑜𝑝2, vs2), . . . (𝑜𝑝𝑘 , vs𝑘 )}. The hard
constraints imply that for every variable assignment 𝑣𝑖 ↦→ (𝑜𝑝𝑖 , vs𝑖 )
in the solution, the donating vehicle 𝑣𝑑 of 𝑜𝑝𝑖 cannot also appear
as a receiving vehicle in the same solution, so for the variable 𝑣𝑑
the solution must contain the variable assignment 𝑣𝑑 ↦→ 𝑛𝑜𝑛𝑒 .

To solve this MOOP we have implemented a multi-objective
variant of And/Or Search. And/Or Search [7] is an exact search
technique for constraint optimization problems that exploits the fact
that not all variables depend on each other, which makes ordinary

depth-first search unnecessarily inefficient. We have implemented
a new variant of this technique, adapted to MOOPs. The main
difference is that, rather than just returning one solution, or all
solutions, it returns the set of Pareto-optimal solutions.

As a final step, every full exchange 𝑆 returned by the algorithm
should be converted to an assignment 𝛼 , but this step trivial. All
orders that appear in the order package of any one-to-one exchange
in 𝑆 should be assigned to receiving company of that one-to-one
exchange, while all other orders are assigned to their owners.

Time Complexity. Since this step entails solving a MOOP its time
complexity is exponential. Each variable of the MOOP corresponds
to a vehicle so the time complexity is 𝑂 (𝑒𝑚𝑌 ) with𝑚 the number
of companies, and 𝑌 the number of vehicles used by each company
in the initial solution.

5.5 Discussion
Step 4 of our algorithm still takes exponential time, so one may
wonder what we have actually achieved. The point is that the prob-
lem to be solved in Step 4 is much simpler than the original problem.
Firstly, because the preceding steps have greatly pruned the search
space, and secondly because the new problem is an ordinary (multi-
objective) constraint optimization problem, in which the objective
functions are simple linear functions (the sum of the costs and the
losses of the individual one-to-one exchanges). In other words, we
have removed the second layer of complexity that we discussed at
the beginning of this section.

In summary, our approach is fast for the following reasons: 1) We
use the VRP-solver only to evaluate one-to-one exchanges rather
than full exchanges, because one-to-one exchanges much smaller,
and there are a lot less of them. 2) The number of one-to-one ex-
changes is reduced by discarding those that involve non-compatible
order-vehicle pairs. 3) The number of one-to-one exchanges is fur-
ther reduced by only considering those that exchange order pack-
ages rather than general sets of orders. 4) The number of one-to-one
exchanges is reduced even further, by discarding those for which
the loss is greater than the savings. 5) We only consider full ex-
changes in which vehicles can act either as donating vehicle or
receiving vehicle, but not both, and in which a vehicle can only
receive at most one order package. This has the advantage that the
number of full exchanges is reduced and that the cost saving of a
full solution can be calculated with a linear formula.

On the other hand, our approach has the disadvantage that it may
be pruning the search space too strongly, because the constraints we
are imposing on the one-to-one order exchanges and the full order
exchanges may cause a number of good solutions to be discarded.

6 EXPERIMENTS
To evaluate our heuristics we have generated 10 test cases from
real-world sample data provided by our industrial partners. In each
of these test cases the two companies each had 100 orders to deliver
on the same day. The total number of locations to be visited by
either company varied among the test cases between 117 and 140.
The average distance between any two locations of the graph varied
between 189 km and 218 km and the diameter of each graph varied
between 594 km and 680 km. The average volume of the orders was
around 26 pallets. We assumed that each vehicle has a maximum



Table 1: Number of solutions found by Order Package
Search, and total cost reduction of Order Package Search and
Single-objective Search.

Test Case #Assign. #IR Soc. Welf. Single Obj.

A 535 133 3.99% 9.04%
B 208 53 3.16% 4.87%
C 59 12 2.29% 8.71%
D 229 111 6.90% 9.15%
E 616 305 4.47% 12.7%
F 318 111 4.29% 9.19%
G 105 53 2.85% 7.27%
H 399 53 3.12% 8.46%
I 400 149 7.81% 11.7%
J 325 67 3.77% 8.75%

capacity of 56 pallets or 25,000 kg, and that each company had
access to an unlimited supply of vehicles because they can rent
them from third parties whenever they do not have enough vehicles
themselves.

The experiments were performed on a machine with a 12-core
CPU, 3.70GHz and 32GB RAM. Our algorithm was implemented in
Java. The results are displayed in Tables 1 and 2.

In Table 1 the first column shows the identifier of each test case.
The second column shows for each test case howmany assignments
were returned by our algorithm. The third column displays how
many of them were individually rational. To give an idea of the
quality of the returned solutions, we picked for each test case the
returned solution with the highest social welfare (i.e. the lowest
sum of costs) and calculated how much this solution reduced the
joint costs with respect to the initial, non-collaborative solution.
This is displayed in the fourth column. In order to compare this
with the single-objective approach discussed in the introduction
we also displayed the cost reduction of the solution found by the
single-objective approach (obtained with the same VRP-solver as
we used for Step 3) in the last column.

Our main observation from Table 1, is that the results display
high variance among the test cases. For some test cases we find
many more solutions than for other test cases. The socially optimal
solutions reduce the total costs of the two companies between 2%
and 8%.We also notice that in most cases the single-objective search
is much better at finding a socially optimal solution, but of course
such a search only returns one solution, while our approach yields
dozens, or even hundreds of alternatives which can be proposed.

In Table 2 we display the average time it took to execute Steps 3
and 4 of our algorithm, as well as the average time for the single-
objective search, for comparison. The time it took to run Steps 1
and 2 of our algorithm was negligible (typically less than 100 ms.),
so they are omitted. All values are averaged over 3 repetitions of the
experiment and are displayed together with their standard errors.

Again, we see very high variance among the test cases, espe-
cially for Step 4. Note that the times in this column are sometimes
indicated in milliseconds, and sometimes in seconds. Step 3 took
between 94 and 224 seconds, while for step 4 it took between 10
milliseconds and 324 seconds.

Table 2: Run times of Steps 3 and 4 of the Order Package
Search, compared with Single-Objective Search.

Test Case Step 3 Step 4 Single Obj.

A 139 ± 8 sec. 150 ± 26 sec. 159 ± 3 sec.
B 138 ± 1 sec. 43 ± 3 ms. 105 ± 1 sec.
C 107 ± 1 sec. 10 ± 4 ms. 114 ± 2 sec.
D 94 ± 1 sec. 780 ± 82 ms. 178 ± 1 sec.
E 175 ± 1 sec. 290 ± 25 ms. 141 ± 1 sec.
F 124 ± 1 sec. 664 ± 221 ms. 135 ± 1 sec.
G 117 ± 1 sec. 36 ± 1 ms. 121 ± 1 sec.
H 209 ± 1 sec. 10 ± 1 sec. 98 ± 1 sec.
I 224 ± 1 sec. 324 ± 95 sec. 120 ± 1 sec.
J 184 ± 1 sec. 363 ± 3 ms. 106 ± 2 sec.

The reason for these differences, is that the effectiveness of
And/Or Search highly depends on the structure of the problem
instance. If all variables in the instance depend on each other, then
And/Or search is no more effective then a depth-first search. On
the other hand, if all variables are completely independent from
each other it can solve the problem in linear time. Therefore, small
variations between instances can yield vary large variations in run
time. Furthermore, the effectiveness of And/Or search also depends
heavily on the order in which the variables are evaluated. To find
the optimal variable ordering, we use non-deterministic heuristic,
so this may sometimes yield less effective orderings. This explains,
for example, the high standard error in Test Case I.

7 CONCLUSIONS
We have presented a heuristic algorithm for a problem that, to
the best of our knowledge, has never been studied before. Namely,
a collaborative VRP without any form of trusted central system
and in which the agents do not know each others’ cost functions,
but are able to estimate them. The goal is, for one agent, to find a
large set of potential proposals for the exchange of orders, so that
they can be used as the input for a negotiation algorithm. These
proposals should ideally be Pareto-optimal and individually rational.
We have compared our approach with a single-objective approach
and conclude that the two approaches are roughly equally fast.
The single-objective approach returns a solution of higher quality,
but has the disadvantage that it only yields one solution, so if this
solution gets rejected our Order Package approach can be used to
find many alternative solutions that can be proposed according to
some negotiation strategy.

ACKNOWLEDGMENTS
This work was supported by project LOGISTAR funded by the
E.U. Horizon 2020 Research and Innovation Programme, Grant
Agreement 769142, by project CI-SUSTAIN funded by the Spanish
Ministry of Science and Innovation (PID2019-104156GB-I00), and
by a Juan de la Cierva research grant from the Spanish Ministry of
Science and Innovation (IJC2018-036443-I).

REFERENCES
[1] Tim Baarslag, Reyhan Aydoğan, Koen V. Hindriks, Katsuhide Fuijita, Takayuki Ito,

and Catholijn M. Jonker. 2015. The Automated Negotiating Agents Competition,



2010-2015. AI Magazine 36, 4 (12/2015 2015), 115–118. http://www.aaai.org/ojs/
index.php/aimagazine/article/view/2609

[2] Tim Baarslag, Koen Hindriks, Catholijn M. Jonker, Sarit Kraus, and Raz Lin.
2010. The First Automated Negotiating Agents Competition (ANAC 2010). In
New Trends in Agent-based Complex Automated Negotiations, Series of Studies in
Computational Intelligence, Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen
Fatima, and Tokuro Matsuo (Eds.). Springer-Verlag.

[3] Csaba Attila Boer, Alexander Verbraeck, Arjen deWaal, Bas van Eck, Jerry Seager,
and TBA Nederland ILLYAN. 2003. Distributed e-services for road container
transport simulation. In Proceedings 15th European Simulation Symposium. 541–
550.

[4] Geoff Clarke and John W Wright. 1964. Scheduling of vehicles from a central
depot to a number of delivery points. Operations research 12, 4 (1964), 568–581.

[5] Sascha Dahl and Ulrich Derigs. 2011. Cooperative planning in express carrier
networks — An empirical study on the effectiveness of a real-time Decision
Support System. Decision Support Systems 51, 3 (2011), 620 – 626. https://doi.
org/10.1016/j.dss.2011.02.018

[6] George B Dantzig and John H Ramser. 1959. The truck dispatching problem.
Management science 6, 1 (1959), 80–91.

[7] Rina Dechter and Robert Mateescu. 2007. AND/OR search spaces for graphical
models. Artificial Intelligence 171, 2–3 (2007), 73 – 106. https://doi.org/10.1016/j.
artint.2006.11.003

[8] Martin Desrochers, Jan Karel Lenstra, and Martin WP Savelsbergh. 1990. A
classification scheme for vehicle routing and scheduling problems. European
Journal of Operational Research 46, 3 (1990), 322–332.

[9] Yvan Dumas, Jacques Desrosiers, and Francois Soumis. 1991. The pickup and
delivery problem with time windows. European journal of operational research
54, 1 (1991), 7–22.

[10] Angela Fabregues and Carles Sierra. 2011. DipGame: a challenging negotiation
testbed. Engineering Applications of Artificial Intelligence (2011).

[11] Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. 1998. Negotiation
decision functions for autonomous agents. Robotics and Autonomous Systems 24,
3-4 (1998), 159 – 182. https://doi.org/10.1016/S0921-8890(98)00029-3 Multi-Agent
Rationality.

[12] Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. 2000. Using Similarity
criteria to make negotiation trade-offs. In International Conference on Multi-Agent
Systems, ICMAS’00. 119–126.

[13] Margaretha Gansterer and Richard F Hartl. 2018. Collaborative vehicle routing:
a survey. European Journal of Operational Research 268, 1 (2018), 1–12.

[14] Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. 2008. The vehicle
routing problem: latest advances and new challenges. Vol. 43. Springer Science &
Business Media.

[15] Takayuki Ito, Mark Klein, and Hiromitsu Hattori. 2008. A multi-issue negotiation
protocol among agents with nonlinear utility functions. Multiagent Grid Syst. 4
(January 2008), 67–83. Issue 1. http://dl.acm.org/citation.cfm?id=1378675.1378678

[16] Dave de Jonge, Tim Baarslag, Reyhan Aydoğan, Catholijn Jonker, Katsuhide Fujita,
and Takayuki Ito. 2019. The Challenge of Negotiation in the Game of Diplomacy.
In Agreement Technologies, 6th International Conference, AT 2018, Bergen, Norway,
December 6-7, 2018, Revised Selected Papers (Lecture Notes in Computer Science),
Marin Lujak (Ed.), Vol. 11327. Springer International Publishing, Cham, 100–114.
https://doi.org/10.1007/978-3-030-17294-7_8

[17] Dave de Jonge and Carles Sierra. 2012. Automated Negotiation for Package
Delivery. In Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2012
IEEE Sixth International Conference on. 83–88. https://doi.org/10.1109/SASOW.
2012.23

[18] Dave de Jonge and Carles Sierra. 2015. NB3: a Multilateral Negotiation Algorithm
for Large, Non-linear Agreement Spaces with Limited Time. Autonomous Agents
and Multi-Agent Systems 29, 5 (2015), 896–942. https://doi.org/10.1007/s10458-
014-9271-3

[19] Dave de Jonge and Carles Sierra. 2016. GANGSTER: an Automated Negotia-
tor Applying Genetic Algorithms. In Recent Advances in Agent-based Complex
Automated Negotiation, Naoki Fukuta, Takayuki Ito, Minjie Zhang, Katsuhide
Fujita, and Valentin Robu (Eds.). Springer International Publishing, 225–234.
http://www.iiia.csic.es/~davedejonge/homepage/files/articles/Gangster.pdf

[20] Dave de Jonge and Carles Sierra. 2017. D-Brane: a Diplomacy Playing Agent
for Automated Negotiations Research. Applied Intelligence 47, 1 (2017), 158–177.
https://doi.org/10.1007/s10489-017-0919-y

[21] Dave de Jonge and Dongmo Zhang. 2020. Strategic negotiations for extensive-
form games. Autonomous Agents and Multi-Agent Systems 34, 1 (Apr 2020).
https://doi.org/10.1007/s10458-019-09424-y

[22] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. 2008. Multi-objective
vehicle routing problems. European journal of operational research 189, 2 (2008),
293–309.

[23] Gilbert Laporte and Yves Nobert. 1987. Exact algorithms for the vehicle routing
problem. In North-Holland Mathematics Studies. Vol. 132. Elsevier, 147–184.

[24] Haibing Li and Andrew Lim. 2003. A metaheuristic for the pickup and delivery
problem with time windows. International Journal on Artificial Intelligence Tools
12, 02 (2003), 173–186.

[25] Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, Juan R. Velasco, and Enrique
de la Hoz. 2009. Effective bidding and deal identification for negotiations in
highly nonlinear scenarios. In Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems - Volume 2 (Budapest, Hungary)
(AAMAS ’09). International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 1057–1064. http://dl.acm.org/citation.cfm?id=1558109.
1558160

[26] Makoto Niimi and Takayuki Ito. 2016. AgentM. In Recent Advances in Agent-
based Complex Automated Negotiation, Naoki Fukuta, Takayuki Ito, Minjie Zhang,
Katsuhide Fujita, and Valentin Robu (Eds.). Springer International Publishing,
235–240.

[27] Li Pan, Xudong Luo, Xiangxu Meng, Chunyan Miao, Minghua He, and Xingchen
Guo. 2013. A Two-Stage Win-Win Multiattribute Negotiation Model: Optimiza-
tion and then Concession. Computational Intelligence 29, 4 (2013), 577–626.
https://doi.org/10.1111/j.1467-8640.2012.00434.x

[28] Laurent Perron and Vincent Furnon. [n.d.]. OR-Tools. Google. https://developers.
google.com/optimization/

[29] Valentin Robu, Han Noot, Han La Poutré, and Willem-Jan van Schijndel. 2008.
An Interactive Platform for Auction-based Allocation of Loads in Transportation
Logistics. In Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems: Industrial Track (Estoril, Portugal) (AAMAS ’08).
International Foundation for Autonomous Agents and Multiagent Systems, Rich-
land, SC, 3–10. http://dl.acm.org/citation.cfm?id=1402795.1402797

[30] Valentin Robu, Han Noot, Han La Poutré, and Willem-Jan van Schijndel. 2011. A
Multi-agent Platform for Auction-based Allocation of Loads in Transportation
Logistics. Expert Syst. Appl. 38, 4 (April 2011), 3483–3491. https://doi.org/10.
1016/j.eswa.2010.08.136

[31] Martin WP Savelsbergh and Marc Sol. 1995. The general pickup and delivery
problem. Transportation science 29, 1 (1995), 17–29.

[32] Alexios Theodoridis and Georgios Chalkiadakis. 2020. Monte Carlo Tree Search
for the Game of Diplomacy. In SETN 2020: 11th Hellenic Conference on Artificial
Intelligence, Athens, Greece, September 2-4, 2020, Constantine D. Spyropoulos,
Iraklis Varlamis, Ion Androutsopoulos, and Prodromos Malakasiotis (Eds.). ACM,
16–25. https://dl.acm.org/doi/10.1145/3411408.3411413

[33] Paolo Toth and Daniele Vigo. 2002. The Vehicle Routing Problem. SIAM mono-
graphs on discrete mathematics and applications, Vol. 9. SIAM. https://doi.org/
10.1137/1.9780898718515

[34] Sander van der Putten, Valentin Robu, Han La Poutré, Annemiek Jorritsma, and
Margo Gal. 2006. Automating Supply Chain Negotiations Using Autonomous
Agents: A Case Study in Transportation Logistics. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multiagent Systems
(Hakodate, Japan) (AAMAS ’06). ACM, New York, NY, USA, 1506–1513. https:
//doi.org/10.1145/1160633.1160926

[35] Xin Wang and Herbert Kopfer. 2014. Collaborative transportation planning of
less-than-truckload freight. OR spectrum 36, 2 (2014), 357–380.

[36] Xin Wang and Herbert Kopfer. 2015. Rolling horizon planning for a dynamic
collaborative routing problem with full-truckload pickup and delivery requests.
Flexible Services and Manufacturing Journal 27, 4 (2015), 509–533.

[37] Xin Wang, Herbert Kopfer, and Michel Gendreau. 2014. Operational transporta-
tion planning of freight forwarding companies in horizontal coalitions. European
Journal of Operational Research 237, 3 (2014), 1133–1141.

[38] Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R. Jennings.
2011. Using Gaussian Processes to Optimise Concession in Complex Negotiations
against Unknown Opponents. In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, Toby Walsh (Ed.). IJCAI/AAAI, 432–438. https://doi.org/10.5591/978-1-
57735-516-8/IJCAI11-080

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2609
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2609
https://doi.org/10.1016/j.dss.2011.02.018
https://doi.org/10.1016/j.dss.2011.02.018
https://doi.org/10.1016/j.artint.2006.11.003
https://doi.org/10.1016/j.artint.2006.11.003
https://doi.org/10.1016/S0921-8890(98)00029-3
http://dl.acm.org/citation.cfm?id=1378675.1378678
https://doi.org/10.1007/978-3-030-17294-7_8
https://doi.org/10.1109/SASOW.2012.23
https://doi.org/10.1109/SASOW.2012.23
https://doi.org/10.1007/s10458-014-9271-3
https://doi.org/10.1007/s10458-014-9271-3
http://www.iiia.csic.es/~davedejonge/homepage/files/articles/Gangster.pdf
https://doi.org/10.1007/s10489-017-0919-y
https://doi.org/10.1007/s10458-019-09424-y
http://dl.acm.org/citation.cfm?id=1558109.1558160
http://dl.acm.org/citation.cfm?id=1558109.1558160
https://doi.org/10.1111/j.1467-8640.2012.00434.x
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://dl.acm.org/citation.cfm?id=1402795.1402797
https://doi.org/10.1016/j.eswa.2010.08.136
https://doi.org/10.1016/j.eswa.2010.08.136
https://dl.acm.org/doi/10.1145/3411408.3411413
https://doi.org/10.1137/1.9780898718515
https://doi.org/10.1137/1.9780898718515
https://doi.org/10.1145/1160633.1160926
https://doi.org/10.1145/1160633.1160926
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-080
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-080

	Abstract
	1 Introduction
	2 Related Work
	2.1 Vehicle Routing Problems
	2.2 Collaborative VRP
	2.3 Multi-Objective VRP
	2.4 VRP with Negotiations

	3 Automated Negotiation
	4 Definitions
	4.1 Schedules
	4.2 Cost Functions
	4.3 Assignments

	5 Order Package Heuristics
	5.1 Step 1: Find Compatible Order-Vehicle Pairs
	5.2 Step 2: Determine All Order Packages
	5.3 Step 3: Generate One-to-One Exchanges
	5.4 Step 4: Combine One-to-One Exchanges into Full Exchanges
	5.5 Discussion

	6 Experiments
	7 Conclusions
	Acknowledgments
	References

